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INTRODUCTION 

Phased array antennas can "steer transmitted or received signals either linearly or in two 
dimensions without mechanically oscillating the antenna. "These antennas are currently 
constructed using ferrite phase shifting elements. Due to the type of circuit requirements 
necessary to operate these antennas, they are costly, large and heavy. Therefore, the use of these 
antennas has been limited primarily to military applications which are strategically dependent on 
such capabilities. In order to make these devices available for many other commercial and 
military uses, the basic concept of the antenna must be improved. If ferroelectric materials could 
be used for the phase shifting element instead of ferrites, phased array antennas would be totally 
revolutionized. A ceramic Barium Strontium Titanate, Bai_xSrxTi03, (BSTO), phase shifter 
using a planar microstrip construction has been demonstrated.l   In order to meet the required 
performance specifications, maximum phase shifting ability, the electronic properties must be 
optimized. As part of this optimization process, various composites of BSTO and non- 
ferroelectric oxides have been formulated. 

Another application for one of these materials is a combined capacitor-varistor device. In general, 
this would be used as a protective device in parallel with electronic information processing 
circuits to protect against spurious voltage surges and voltage transients. The capacitive aspect 
of the device would guard against low-amplitude and high frequency transients which cause 
errors in signal processing or in stored signals. The varistor function of the device protects 
against high-amplitude voltage surges. The capacitor-varistor device has been attempted 
previously by appropriately doping SrTi03 to form grain boundary phases or layers which 
exhibit the desirable characteristics.2 Also discrete layers of ZnO and Pb(Fei/2Nb 1/2)03- 
Pb(Fe2/3Wi/3)03 (dielectric constant of 27000 to 32000) have been fabricated.3   The problem 
with the former scheme has been with the high loss tangents and high threshold voltages derived 
from the metallic additives and the semiconducting capacitor. The problem associated with the 
latter scheme is with the processing of the lead based capacitor compounds and the deleterious 
diffusion between the ZnO varistor layers and lead-based capacitor layers. 

The composites will be designated as BSTO-Oxide II, BSTO-Oxide III, BSTO-Oxide II / BSTO- 
Oxide III, BSTO-Oxide in Compound (A), BSTO-Oxide III Compound (B), BSTO-Oxide III 
Compound (C), and BSTO-Oxide IV since they all have patents pending on their formulations. 
All of these composites possess improved electronic properties. The comparison of the 
compositions and phase formation of the various BSTO-Oxide ceramic composites will be made 
and related to their electronic properties. 

EXPERIMENTAL 

Processing and Metallization 

The ceramics have been processed using standard solid state methods and which have been 
outlined in a previous publication.4 The electrodes were fabricated using two metallization 
techniques. One involved painting on two circular, aligned electrodes, one on either side of the 
specimens, using high purity silver paint (SPI Supplies West Chester, PA) and attaching wires 
using high purity silver epoxy, Magnobond 8000, made by Magnolia Plastics, Inc., Chamblee, 
GA. The other technique utilized the screen printing of electrodes using silver conductive ink 



(FERRO #3350, Electronic Materials Division, Santa Barbara, CA) and wires were attached by 
dipping the specimens in a bath of 2% silver, 62% tin and 36% lead solder. 

Electronic Measurements 

The dielectric constants, e', loss, tan ö, and % tunability and Curie temperatures were 
determined for all composites. The % tunability of a material is determined using the following 
equation: 

% tunability = { e'(0) - e'(Vapp)}/ {e'(0)> (1) 

The tunability measurements were taken with an applied electric field which ranged from 0 to 3.0 
V/micron ((.im). The electronic properties given in the forthcoming tables were measured at a 
frequency of 1 KHz. Capacitance measurements for all materials were taken using an HP4284A 
LCR meter. Further calculations were done to correct for the effect of fringe capacitance. 

RESULTS AND DISCUSSION 

BSTO-Oxide III. BSTO-Oxide II / Oxide III. BSTO-Oxide III Compound Composites 

SEM and X-ray Diffraction: No secondary phases (other than BSTO and the Oxide III 
components) were identified by X-ray diffraction for the BSTO-Oxide III and BSTO-Oxide III 
Compound (B) composites. Also the SEM photographs did not reveal any evidence of secondary 
phase formation. However, analysis of the X-ray diffraction patterns of the BSTO-Oxide 11/ 
Oxide III, BSTO-Oxide III Compound (A) and BSTO-Oxide III Compound (C) composites 
revealed the existence of secondary phases. These phases were also evident as discolorations in 
their respective SEM photographs. 

Electronic Properties: The electronic data for the BSTO-Oxide III, BSTO-Oxide II / Oxide III 
and BSTO-Oxide III Compound (A)-(C) composites are shown in Table 1. As shown in the 
table, the dielectric constants decrease with increase in oxide content and the tunability decreases 
slowly with increase in oxide content. In fact, the BSTO-Oxide III and BSTO-Oxide III 
Compound (B) composites exhibit high tunabilities (>10%) up to 60 wt% oxide III which is not 
the case for the other composites reported in the table. However, at similar electric field strengths 
the tunability of the 60 wt% BSTO-Oxide III Compound (B) composite is nearly twice that of 
the 60 wt% BSTO-Oxide III composite. This may be due to the fact that, the Curie temperature 
of the 60 wt% BSTO-Oxide III Compound (B) composite is at 0°C. On the other hand, the 
Curie temperatures for the 60 wt% BSTO-Oxide III, BSTO-Oxide II/Oxide III and the BSTO- 
Oxide III Compound (A) and BSTO-Oxide III Compound (C) composites are all very low, <-50 
to <-55°C, (in the far paraelectric region). Another significant factor which effects the tunability 
is the size of the oxide additive. The size of Oxide II is much greater than the size of Oxide III. 
Therefore composites containing Oxide II, BSTO-Oxide II / Oxide III and BSTO-Oxide III 
Compound (A) (which also contains Oxide II), will have much less tunability at high additive 
content (60 wt%) due to lack of connectivity between the BSTO in the composites. The 
observed tunabilities for these materials is <2.0%. The differences in the tunabilities of the 60 
wt% oxide content composites could also be due to the fact that the BSTO-Oxide III and BSTO- 



TABLE I:   Electronic Properties of BSTO-Oxide III, BSTO-Oxide II / Oxide III, BSTO-Oxide 
III Compound (A), BSTO-Oxide III Compound (B), and BSTO-Oxide III Compound (C) 
Ceramic Composites Measured at 1 KHz. (*poor contact) 

BSTO-Oxide [II 
Oxide III Dielectric Loss % Tunability Electric Curie 
Content (wt%) Constant Tangent Field (V/\im) Temp ((') 
0.0 3299.08 0.0195 19.91 0.73 10 
1.0 1276.21 0.0015 16.07 2.32 -30 
5.0 1770.42 0.0014 -30 
10.0 1509.19 0.0018 -35 
20.0 1079.21 0.0009 15.95 2.33 -30 
30.0 750.93 0.0008 9.350 1.62 -30 
60.0 117.67 0.0006 11.08 2.70 <-55 
BSTO-Oxide II / Oxide III 
Oxide II--' Dielectric Loss % Tunability Electric Curie 
Oxide III Constant Tangent Field (V/'j.im) Temp (C) 
Content (wt%) 
0.0 3299.1 0.0195 19.91 0.73 10 
1.0 2515.3 0.0011 12.24 1.14 -15 
10.0 1868.9 0.0013 11.63 1.56 -20 
20.0 1016.0 0.0327* 10.89 1.33 <-55 
30.0 389.06 0.0009 1.607 1.34 <-55 
60.0 93.591 0.0022 0.450 0.99 <-55 
BSTO-Oxide [II Compound (A) 
Oxide III Dielectric Loss % Tunability Electric Curie 
Compound (A) Constant Tangent Field (V/pun) Temp (Cj 
Content (wt%) 
0.0 3299.1 0.0195 19.91 0.73 10 
1.0 3064.9 0.0019 18.58 1.66 -5 
10.0 2209.2 0.0019 13.29 1.34 -5 
20.0 1425.7 0.0014 6.910 0.91 -10 
30.0 582.84 0.0030 7.347 0.51 -30 
60.0 83.941 0.0176* 1.054 1.00 <-50 
BSTO-Oxide [II Compound (B) 
Oxide III Dielectric Loss % Tunability Electric Curie 
Compound (B) Constant Tangent Field (17fun) Temp (C) 
Content (wt%) 
0.0 3299.1 0.0195 19.91 0.73 10 
1.0 3292.5 0.0066 35.24 2.00 -10 
5.0 2267.4 0.0050 29.78 2.00 0 
10.0 1264.6 0.0057 19.94 2.00 -25 
20.0 842.23 0.0146 19.93 2.00 -20 
30.0 413.04 0.0313 22.72 2.00 -10 
60.0 76.70 0.0125 17.00 2.00 0 
BSTO-Oxide 1 [II Comnound (O 
Oxide III Dielectric Loss % Tunability Electric Curie 
Compound (C) Constant Tangent Field (V/yon) Temp (C) 
Content (wt%) 
0.0 3299.1 0.0195 19.91 0.73 10 
1.0 2256.5 0.0014 30.96 2.00 -17 
5.0 2193.2 0.0021 17.89 2.00 -15 
10.0 1386.5 0.0022 18.69 2.00 -15 
20.0 649.90 0.0021 15.23 2.00 -13 
30.0 263.52 0.0056 11.52 2.00 -50 
60.0 108.25 0.0085 3.72 2.00 <-55 



Oxide III Compound (B) compounds do not exhibit secondary phases whereas the other 
composites form multiple secondary phases as discussed previously. These non-ferroelectric 
phases tend to inhibit tunability at high additive contents. 

As shown in Fig. 1, the loss tangents of most of these composites are extremely low 
(< 0.01). However, the loss tangents of the BSTO-Oxide III Compound (B) composites are 
greater than 0.01 and all of the other composites reported here. Again, the position of the Curie 
temperature for these composites may contribute to the higher losses evident in these specimens. 
In fact, the Curie temperature and the loss of these composites is much closer to that of undoped 
BSTO (Ba=0.60). 

0.01 
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Fig. 1. Loss Tangent vs. Oxide Content for BSTO-Oxide III, BSTO-Oxide 11/ Oxide III and 
BSTO-Oxide III (A) and BSTO-Oxide III (C) Compound Composites measured at 1 KHz. 



BSTO-Oxide IV Composites 

The electronic properties and the average grain, size of the BSTO-Oxide IV composites are shown 
in Table 2. At low doping levels (1-15 wt%), the composites have large dielectric constants and 
possess low loss tangents and reasonably high tunabilities. These properties meet the 
requirements for various antenna applications (especially low frequency applications).  At higher 
levels (20-50 wt%), the addition of oxide IV content continues to increase the dielectric constant 
drastically especially at low frequencies, and the composites begin to conduct current and exhibit 
non-ohmic behavior and the threshold voltage is seen to increase with an increase in oxide IV 
content. The nonlinear electrical conduction in the ceramic composite is due to the addition of 
oxide IV (no secondary phases where observed from X-ray diffraction and SEM anaylsis) in 
which tunneling through the grain boundaries occurs. 

Fig. 2 shows the current versus voltage for BSTO-Oxide IV (30 and 50 wt%) composites. It 
should be noted that as the oxide IV content is increased, the dielectric constant increases, and the 
non-linearity exponent increases. This increase in the non-linearity is also roughly related to the 
decrease in the grain size as indicated in Table 2. 

The threshold voltage for the BSTO-Oxide IV (50 wt%) specimen is lower than reported for 
any bulk capacitor-varistor device (which was reported to be around 100 V)2 and the 
capacitance is higher than that obtained for multilayered structures (nearly twice the 
capacitance reported) 3. 

TABLE 2. Electronic Properties and Grain Size of BSTO-Oxide IV Composites 
Measured at 1 KHz. 

Oxide IV Dielectric Loss Tunability         Electric 
Content wt.% Constant Tanecnt (Percent) Field (V/um) 

1.0 3756 0.00236 7.334 1.0 
5.0 3416 0.01276 8.957 0.8 
10.0 3908 0.01320 13.11 0.7 
15.0 3942 0.03708 27.97 0.6 
20.0 4685 0.19113   — 
25.0 7520 0.46976   — 
30.0 7859 0.46927   — 
50.0 71922 0.46891   — 

Oxide IV Threshold Nonlinearitv Grain 
Content wt.% Voltajre Exnonent Size (urn) 

1.0 __ _ 
5.0 — — 10.24 
10.0 — — 9.774 
15.0 —- — 8.610 
20.0 100 6.510 8.387 
25.0 25 5.390 7.514 
30.0 20 10.290 6.806 
50.0 5 8.349 5.909 



4 30 wt% Oxide IV 

50 wt% Oxide IV 

VOLTAGE  (V) 

Fig. 2. Current vs. Voltage for BSTO- Oxide IV (30 and 50 wt%) Composites. 

CONCLUSIONS 

The BSTO-Oxide III, BSTO-Oxide II / Oxide III and BSTO-Oxide III Compound (A)-(C) 
ceramic composites possess low loss tangents and high tunabilities. The data suggest that 
composites containing oxide III or an oxide III compound tend to display similar electronic 
behavior.and can potentially facilitate the operation of ferroelectric phased array antennas at 
millimeter wave range frequencies. The BSTO-Oxide IV materials exhibit behavior which 
renders them suitable for use both (at oxide content < 15 wt%) in phased array antenna 
systems and (at oxide content > 15 wt%) as a capacitor-varisitor protection device for 
microelectronic circuits.  The improved properties of these composites includes very low 
threshold voltages ((d)5 V), reasonable nonlinear coefficients, moderate to low loss tangents, 
tunable and extremely high dielectric constants. It should be noted that the low threshold 
voltage accompanied by an extremely high dielectric constant was accomplished in a bulk 
ceramic (1mm thickness) and is less than that reported for thin film laminates''. 
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